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Employing the equations describing the dynamics of a viscous radiating gas, we 
examine the hypersonic flow over blunted cones under conditions of re-entry 
into the earth's atmosphere. The problem is solved by means of numerical methods. 

In hypersonic flow over blunted cones radiation of the gas, heated in passing through 
the bow shock wave, gives rise to radiative interaction between various regions of the flow 
and to the appearance of noticeable gradients in the gasdynamic functions at the outer edge 
of the boundary layer. In the presence of radiation, therefore, it becomes appropriate to 
calculate simultaneously the whole flow field in the shock layer through use of the equations 
for the dynamics of a viscous gas. Typical values of the Reynolds number for the flows in 
question are on the order of 104 . Therefore, following [i], we neglect in the momentum and 
energy conservation equations terms whose order of smallness throughout the shock layer is 

i/2 greater than the zeroth order with respect to the parameter Re- . We also assume presence 
in the shock layer of local thermodynamic equilibrium; in addition, we assume the binary dif- 
fusion law applies, and we also account for the contribution of diffusion to the flow of heat 
through the use of a total thermal-conductivity coefficient (see [2]). The starting system 
of equations, written in terms of the (s, n)-coordinates related to the surface of the body, 
has the form 
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The region of gas flow considered is that bounded by the bow shock wave, the axis of 
symmetry, the surface of the body, and some ray s = S. At the shock wave itself we use the 
Rankine--Hugoniot relations. In this connection, we do not take into account perturbation of 
the incident flow parameters as the result of radiation from the shock layer. At the axis 
s = 0 we make use of symmetry conditions. At the surface of the body we set both components 
of the flow velocity to zero, i.e., we neglect any deformation of the surface. The surface 
temperature is taken equal to 2500~ The boundary ray s = S is located six nose radii from 
the forward stagnation point. 
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The divergence of the radiant energy flux vector is calculated under the approximation 
of a local one-dimensional planar layer, assuming the radiant intensity at the shock wave 
and at the surface of the body to be zero. We justify these boundary conditions for the radi- 
ant intensity as follows. Under the conditions assumed here, there is no radiation from the 
incident flow in the shock layer. The surface of the body, in the range of wavelengths for 
which there is substantial absorption of radiant energy in the shock layer, can be considered 
to be absolutely black (see [3]). The characteristic radiation from the surface, owing to 
the comparatively low temperature of the latter, is small in comparison with radiation from 
the shock layer and it necessarily has its maximum at those wavelengths for which the shock 
layer is practically transparent in the atmosphere. 

The problem is solved numerically with the aid of a double-tiered implicit difference 
scheme, described in detail in [i] where it was used to calculate the flow over a sphere of 
a viscous gas with a constant specific heat ratio. We pause to point out certain peculiari- 
ties in the application of this scheme for calculating the flow over bodies having a discon- 
tinuity in the curvature of a generator and in taking into account equilibrium physicochemi- 
cal transformations of the gas and of the radiation. 

At the point where the sphere and cone join, the (s,n)-coordinate system being used has 
a singularity, so that the derivatives with respect to s of the unknown functions, taken on 
the ray passing through the join point, suffer discontinuities. On the spherical portion of 
the body surface the (s,n)-coordinates do not differ essentially from spherical polar coordi- 
nates, while on the cone portion of the body they are essentially the same as cylindrical co- 
ordinates. For definiteness, we consider the ray passing through the join point as belonging 
to the cylindrical coordinate system. In order to be able to calculate derivatives with re- 
spect to s on this ray with second-order accuracy maintained in the finite-difference formulas 
and, also, to properly take into account the mutual influence of the flow regions situated on 
both sides of this ray, it is necessary, in the region upstream of this ray, to project the 
vector quantities onto the axis of symmetry of the cylindrical coordinate system and to then 
recalculate through interpolation the values of all the unknown functions at the nodes of 
this coordinate system. 

In determining the shape of the shock wave an error of alternating sign can arise depend- 
ing on the difference scheme employed (see [4]). To overcome this error we do the following: 
on the portion of the axis of symmetry up to the ray passing through the join point we smooth 
the values of the shock detachment distance in accordance with the method proposed in [4]. 

The thermodynamic functions of equilibrium air and its composition, needed to calculate 
the absorption coefficient, are obtained with the aid of the approximate analytic relation- 
ships given in [5]. In this connection, it is convenient, in contrast to [i], to consider 
the pressure, rather than the density, as the unknown function. In this case, the matrix of 
the coefficients of the time derivatives does not turn out to be the identity matrix; this, 
however, entails no essential changes in the computational scheme. 

The coefficient of viscosity and the total coefficient of thermal conductivity are cal- 
culated from the data given by Jos in [2]. His data were introduced into the program in the 
form of a table involving the two variables T and log p, with the tabular increments AT = 
500~ and A log p = I; values at grid points were obtained from this table by linear inter- 
polation. 

The absorption coefficient for air was calculated with the aid of the eight-degree spec- 
tral model given in [6]. In this regard, radiation Was taken into account from spectral lines, 
molecular-band spectra, and also the continuous spectrum. Flow calculations in the vicinity 
of the stagnation point, made with the aid of this spectral model (see [7]), have shown that 
it describes the radiational processes consistent with the present-day state of the data con- 
cerning the optical properties of high-temperature air. 

In accordance with the model adopted for the coefficient of absorption, we proceeded as 
follows in calculating the divergence of the radiant energy flux vector: we divided the en- 
tire spectrum into eight intervals, with the coefficient of absorption being independent of 

the frequency in each of them. Let Bi= IB,vdv, where i is the number of the spectral interval~ 

Taking the derivative of B i with respect to the optical coordinate T i as constant between 
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Fig. I. Variation of the shock detachment distance c and the pressure p on the sur- 
face of the body, and also behind the shock wave, as a function of the coordinate s. 
All quantities shown are dimensionless. 

Fig. 2. Distribution of the friction coefficient Cf and the convective heat flux qc 
(kW/cm 2) along the body surface. 

neighboring computational nodes on the ray s = const, we can obtain the following expression 
for the divergence of the radiant energy flux vector: 

8 
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j = 0,  1, . . . ,  m, whe re  m i s  t h e  number  o f  n o d e s  on t h e  r a y .  

To f u r t h e r  s i m p l i f y  t h e  c a l c u l a t i o n s ,  we r e p l a c e d  t h e  i n t e g r o - e x p o n e n t i a l  f u n c t i o n s  in  
Eq. (2) by s i m p l e  e x p o n e n t i a l  f u n c t i o n s ,  

1 
E~ (z) ~ exp ( - -  2z), E~ (z) ~ - ~  exp ( - -  2z), 

in addition, we obtained the quantities B i by expanding the spectral intensity of the equilib- 
rium radiation in a Taylor series, retaining the first two terms of the expansion. These 
simplifications were justified in [6]. The computing time was substantially shortened by cal- 
culating the inner sum in the expression (2) on a uniform grid with respect to the optical 
coordinate, with a subsequent interpolation of its values at the computational nodes. The 
calculations showed, for the conditions considered here, that it was sufficient at each time 
step to determine the divergence of the radiant heat-flux vector just once, there being no 
need to recompute it during the course of the iterations. 

In concluding, we pause to consider how the thermal fluxes and frictional stresses on 
the body surface were determined. Taking into account the assumptions made above, we obtain 
the following expression for the radiant heat flux: 

8 

(qr)j ---- ~ ~ {B~,m exp [-- P~ (~,~ -- z~,i)] -- B~,0 exp (-- P~.i) -- 
i=! 
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1 ~ .  (Bi,c0+l __ B,.c6) [exp ( - -  2 (i~i.i - -  ~.CO +11)) + exp ( - -  2 (lTd.] - -  x~,eol))l}- (3) 
2 C  = 

In  c a l c u l a t i n g  t h e  c o n v e c t i v e  h e a t  f l u x  and t h e  f r i c t i o n a l  s t r e s s  i t  i s  a p p r o p r i a t e ,  i n  
t h e  n u m e r i c a l  d i f f e r e n t i a t i o n  f o r m u l a s  f o r  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  n ,  t o  draw upon 
t h e  s m a l l e s t  number  o f  c o m p u t a t i o n a l  n o d e s ,  i n c r e a s i n g  t h e  o r d e r  o f  t h e  a p p r o x i m a t i o n  t h r o u g h  
t h e  u s e  of  d i f f e r e n t i a l  e q u a t i o n s  on t h e  s u r f a c e  o f  t h e  body .  I n  t h e  p r e s e n t  p a p e r  we c a l c u -  
l a t e d  t h e  c o n v e c t i v e  h e a t  f l u x  and t h e  f r i c t i o n a l  s t r e s s  f rom f o r m u l a s  i n v o l v i n g  two c o m p u t a -  
t i o n a l  n o d e s  a l o n g  t h e  body  n o r m a l  and h a v i n g  s e c o n d - o r d e r  a p p r o x i m a t i o n  t o  t h e  s o l u t i o n s  of  
t h e  d i f f e r e n t i a l  e q u a t i o n s .  
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Fig. 3. Distribution of the radiant 
heat flux qr (kW/cm2) along the body 
surface. 

The calculations made here were for the flow over blunted cones of 20-cm nose radius and 
of varying cone angles, the cone velocities varying from 12.2 to 15 km/sec at an altitude of 
61 km. The calculations employed a grid containing 30 rays s = const, with 26 nodes per ray. 
To insure the required accuracy in the calculations in the region near the wall, we employed 
a denser distribution of coordinate curves to the body surface (see [i]). Controlled calcu- 
lations were made with the densification parameter H taking on values in the interval 500 < 
H < 5000. The results obtained with H = 2500 and with H = 5000 did not differ by more thaw 
i%~ even with a twofold variation in the coordinate n close to the wall. In subsequent cal- 
culations we used the value H = 2500. 

Some of the results obtained are shown in Figs. 1-3. Linear quantities are nondimen- 
sionalized by dividing by the nose radius; the pressure was nondimensionalized by dividing by 
the quantity p~V~. The friction coefficient is defined as the ratio of the frictional stress 
at the body surface to the quantity p~V~. 

For V= = 12.2 km/sec, Fig. 1 shows the variation of the shock detachment distance and 
the pressure distribution along the cone surface for cone half-angles of 8co= 30, 45, and 60 ~ 
(curves i, 2, and 3, respectively). Curves i', 2', and 3' show the pressure distributions 
for these cones along the shock wave. It can be seen that as the cone half-angle decreases, 
the shock detachment distance becomes a substantially nonmonotonic function of s. 

Figure 2 shows how the friction coefficient Cf and the convective heat flux qc vary 
along the cone surface. Curves i, 2, and 3 correspond to cones of half-angles Oco = 30, 45, 
and 60 ~ for V~ = 12.2 km/sec; curves 2' are for a cone with 8co = 45 ~ with V= = 15 km/sec. 
The dashed curves give the values of Cf and qc, obtained when radiation is not taken into ac- 
count. For all values of 8co the friction coefficient turns out to be essentially a nonmono- 
tonic function of the longitudinal coordinate. It has a maximum on the spherical portion of 
the body and a minimum at the join point; these are displaced towards the axis of symmetry 
and become less pronounced as 8co increases. On the conical portion of the body the nature 
of the function Cf(s) is substantially different for 8co = 30, 45, and 60 ~ Radiation leads 
to a decrease in the friction coefficient up to the join point and to an increase in this co- 
efficient beyond the join point. The convective heat flux on the spherical portion of the 
body decreases sharply. On the conical portion of the body, it approaches a constant value 
as s increases. For the conditions considered here, we can say that radiation somewhat lowers 
the convective heat flux over the entire surface of the body. 

Distribution of the radiant heat flux over cone surfaces is shown in Fig. 3. Curves i, 
2, 2', and 3 correspond to the same values of 8co and V~ as in Fig. 2. In addition, for 
V~ = 15 km/sec, the curve 2' indicates the variation of the quantityO.5qr. It is evident 
that for V~ = 12.2 km/sec, for cones with half-angles @co = 30 and 45 ~ the radiant heat flux 
on the conical portion of the body is much less than it is at the stagnation point. For 
8co = 60 ~ beyond the join point, qr begins to increase, and for s = 6 it substantially ex- 
ceeds its value at the stagnation point. For V = 15 km/sec there is a noticeable increase 
in the radiant flux on the lateral surface of t~e body, even for a cone with a half-angle of 
45 ~ (curve 2'). The growth of qr on the lateral surface of strongly blunted cones is due to 
the increase in the shock detachment distance when a sufficiently high temperature is main- 
tained in the radiating shock layer. The dashed curve in Fig. 3 represents the radiant flux 
obtained in [8] for the case of nonviscous flow over a blunted cone with 8co = 60 ~ the flight 
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conditions and the spectral model for the absorption coefficient being the same as in the 
present paper. Comparing our results with those from [8], we see that, for the conditions 
considered, absorption of radiant energy in the boundary layer noticeably (as much as 20%) 
lowers the radiant heating of the surface of the body. 

NOTATION 

Re, Reynolds number; t, T, h, p, p, time, temperature, enthalpy, density, and pressure, 
respectively; s, arc length measured from the forward stagnation point; n, distance along the 
normal from the body surface; u, v, component of the vector velocity V in the s,n directions; 
k, curvature of a generator of the body surface; e, angle of inclination of the generator to 
the undisturbed flow direction; ,co , cone half-angle; r, distance between the axis of sym- 
metry and the body surface; ~, total thermal conductivity; ~, dynamic viscosity coefficient; 
I~, spectral radiant intensity; ~, linear spectral absorption coefficient with reference to 
forced emission; x, coordinate along the direction of radiation propagation; zv, optical co- 
cordinate for frequency ~; En, integro-exponential function; Bi, integral of equilibrium 
radiant intensity within a spectral interval; m, specified number of nodes on a ray; qr, radi- 
ant heat flux; qc, convective heat flux; Cf, friction coefficient; H, parameter determining 
density of coordinate lines to the body surface; e, shock detachment distance. Indices: ~ , 
values of undisturbed flow parameters. 
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PROPERTIES OF THE DEFORMATION OF TEMPERATURE FIELDS IN THE 

MOVEMENT OF AN OPAQUE GAS MEDIUM 

S. I. Gertsyk and A. G. Zen'kovskii UDC 536.24 

The deformation of temperature fields in the movement of a light-absorbing gas 
medium in a flat channel is studied analytically. It is shown that with an in- 
crease in the optical density of the stream its central part retains a high tem- 
perature level far from the entrance section owing to the high screening capa- 
city of the boundary layers. 

Let us consider the movement of a gas stream in a channel formed by two parallel iso- 
thermal and diffuse semiinfinite gray surfaces which are located a finite distance apart. The 
gas stream moving in the channel is assumed to be a homogeneous and isotropic gray medium 
which is in a state of local thermodynamic equilibrium and is able to emit and absorb radiant 
energy. The initial temperature distribution in the gas layer and the velocity profile of 
the movement of the gas stream can be assigned arbitrarily. 
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